

Overview

Project Summary

● Name: Ankr
● Platform: Ethereum
● Language: Solidity
● Repository: https://github.com/Ankr-network/stakefi-smart-contract
● Audit Scope: See Appendix - 1

Project Dashboard
Application Summary

Name Ankr

Version v2

Type Solidity

Dates May 19 2023

Logs Apr 28 2023; May 19 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 5

Total Low-Severity issues 4

Total informational issues 6

Total 15

Contact
E-mail: support@salusec.io

1

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Centralization risk 6
2. No function sets the _exits variable 8
3. Lack of access control on cleanUserLocks() 9
4. Slashed amount for each providers is not tracked 10
5. Return value of _unsafeTransfer is not being checked in several places 11
6. Lack of access control on claim() 12
7. Flawed implementation of totalSupply() 13
8. Incorrect value logged in event 14
9. mint() does not return correct value 15

2.3 Informational Findings 16
10. Mismatch between code and description 16
11. Mixed use of reentrancy prevention modifiers 17
12. Missing reentrancy guard 18
13. Can add old parameters to SwapFeeParamsChanged() event 19
14. Lack of events 20
15. Redundant code 21

Appendix 22
Appendix 1 - Files in Scope 22

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Centralization risk Medium Centralization Acknowledged

2 No function sets the _exits variable Medium Business logic Resolved

3 Lack of access control on cleanUserLocks() Medium Access control Acknowledged

4 Slashed amount for each providers is not
tracked

Medium Business logic Resolved

5 Return value of _unsafeTransfer is not being
checked in several places

Medium Validation Resolved

6 Lack of access control on claim() Low Access control Acknowledged

7 Flawed implementation of totalSupply() Low Business logic Acknowledged

8 Incorrect value logged in event Low Logging Resolved

9 mint() does not return correct value Low Business logic Resolved

10 Mismatch between code and description Informational Code quality Resolved

11 Mixed use of reentrancy prevention modifiers Informational Reentrancy Resolved

12 Missing reentrancy guard Informational Reentrancy Resolved

13 Can add old parameters to
SwapFeeParamsChanged() event

Informational Logging Resolved

14 Lack of events Informational Logging Acknowledged

15 Redundant code Informational Redundancy Resolved

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Centralization risk

Severity: Medium Category: Centralization

Target:
- All

Description

Throughout the code base, there are several privileged roles.

The owner of the GlobalPool_R42 contract:
- can update the address of _aethContract, _fethContract, _configContract,

_withdrawalPool, and_stakingContract
- can change the operator
- can add or remove vault from allowlist

The operator of the GlobalPool_R42 contract:
- can push ethers to allowed vault or beacon chain
- can distribute rewards using distributeRewards(). Notice that the feeAmount that was

transferred to the treasury is inputted by the operator
- can make force exit for providers by using forceAdminProviderExit()
- can reset the provider rewards by using resetLockedEthForProviders()
- can slash provider by using slashETH()

The owner of the AETH_R18 contract:
- can reset the ratio of bonds to shares by using repairRatio()
- can set the address of _globalPoolContract, _bscBridgeContract, and _feeRecipient
- can change the operator
- can act as an operator
- can pause or unpause the contract

The operator of the AETH_R18 contract:
- can update the ratio to a value within the threshold
- can set name and symbol of the token

The owner of the FETH_R18 contract:
- can set the address of _globalPoolContract and _aEthContract,

The owner of the WithdrawalPool contract:
- can change the _pool address, which is the recipient of withdrawals

The pauseAddr in the DepositWrapper contract:
- can pause and unpause the contract

The governanceAddr in the DepositWrapper contract:
- can set the depositAddr and the pauseAddr

6

If these privileged accounts are plain EOA accounts, this poses a risk to the users. If any of
the private keys is compromised, an attacker could exploit the privileged operations to attack
the project.

Moreover, the upgradeable proxy pattern is used in the GlobalPool, AETH, and FETH
contracts. The proxy admin controls the upgrade mechanism to upgradeable proxies, and
can change the respective implementations. Should the admin’s private key be
compromised, an attacker could upgrade the logic contract to execute their own malicious
logic on the proxy state.

Recommendation

We recommend transferring privileged accounts to multi-signature accounts with timelock
governors for enhanced security. This ensures that no single person has full control over the
accounts and that any changes must be authorized by multiple parties, with a designated
time limit for approval.

Status

This issue has been acknowledged by the team.

7

2. No function sets the _exits variable

Severity: Medium Category: Business logic

Target:
- legacy/contracts/upgrades/GlobalPool_R42.sol

Description

The GlobalPool_R42 contract uses _exits to track the exit block number for a provider.

legacy/contracts/upgrades/GlobalPool_R42.sol:L150-L154
modifier notExitRecently(address provider) {

require(block.number >
_exits[provider].add(_configContract.getConfig("EXIT_BLOCKS")), "Recently exited");

delete _exits[msg.sender];
_;

}

The _exits state variable is used in the notExitRencently() modifier, which modifies the
claimAETH() and claimFETH() function.

legacy/contracts/upgrades/GlobalPool_R42.sol:L606-L613
function softLockBlockNumber(address provider) public view returns (uint256) {

uint256 exitedAt = _exits[provider];
if (exitedAt == 0) {

return 0;
}
uint256 waitFor = _configContract.getConfig("EXIT_BLOCKS");
return exitedAt.add(waitFor);

}

The _exits is also used in the softLockBlockNumber() function.

However, the _exits variable is not being set by any function in the GlobalPool_R42 contract.

Recommendation

The operator can call forceAdminProviderExit() to make providers exit. This function uses
the _forceProviderExitFor() internal function to handle its business logic. We suspect
_forceProviderExitFor() should update _exits but does not. If that is the case, we
recommend updating _exits in _forceProviderExitFor().

Status

The team has resolved this issue by removing the logic related to _exits.

8

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L150-L154
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L300
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L313
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L606-L613
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#LL572C14-L572C36
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#LL591C14-L591C35

3. Lack of access control on cleanUserLocks()

Severity: Medium Category: Access control

Target:
- legacy/contracts/upgrades/AnkrDeposit_R3.sol

Description

The cleanUserLocks() function in AnkrDeposit_R3 contract is used by other functions (e.g.
_claimAndDeposit(), _unfreeze()) to clear the lock information for a user.

However, this function is defined as a public function, meaning anyone can call it, which can
result in state-changing logic being executed in an unintended context.

Recommendation

If cleanUserLocks() is designed for internal use only, change its visibility to internal or
private. If it is also for external use, add proper access control to it.

Status

This issue has been acknowledged by the team. The team stated that public is okay for
cleanUserLocks because it has an if statement to skip locks that do not end.

9

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/AnkrDeposit_R3.sol#L233-L254
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/AnkrDeposit_R3.sol#L128
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/AnkrDeposit_R3.sol#L152

4. Slashed amount for each providers is not tracked

Severity: Medium Category: Business logic

Target:
- legacy/contracts/upgrades/GlobalPool_R42.sol

Description

The ﻿slashETH() function in the GlobalPool_R42 contract can be used by the operator to
slash a provider. However, this function only tracks the total slashed amount,
﻿_totalSlashedETH, and does not track the amount slashed for each individual provider.

The ﻿slashingsOf() function in the GlobalPool_R42 contract is intended to return the amount
slashed for a provider, but currently it returns zero. This may cause confusion for end users
and developers who wish to integrate the protocol.

Recommendation

We recommend adding a state variable to track the amount slashed for a provider, and
updating it in the slashETH() function. Then, we can use this state variable in the
﻿slashingsOf() function to return the amount slashed for the provider.

Status

The team has resolved this issue by removing the logic related to slashed ETH.

10

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L615-L625
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L556C16-L558

5. Return value of _unsafeTransfer is not being checked in
several places

Severity: Medium Category: Validation

Target:
- legacy/contracts/upgrades/GlobalPool_R42.sol

Description

The _unsafeTransfer() function in the GlobalPool_R42 contract returns a boolean value
indicating whether the transfer is successful or not.

However, the pushToVault() and distributeRewards() functions use _unsafeTransfer() without
checking its return value. This can result in ﻿_unsafeTransfer() failing silently and the
subsequent logic being executed regardless.

Recommendation

Add a check for _unsafeTransfer()’s return value in these functions.

Status

The team has resolved this issue.

11

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L704-L723
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L200
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L432

6. Lack of access control on claim()

Severity: Low Category: Access control

Target:
- legacy/contracts/upgrades/FeeRecipient_R1.sol

Description

The claim() function in the FeeRecipient_R1 contract is intended to transfer the balance to
the GlobalPool and the treasury. Currently, anyone can call this function, which could result
in it being executed in an unintended context.

Recommendation

Currently, the claim() function is called by the updateRatioAndClaim() function in the
AETH_R18 contract. We recommend adding proper access control to the ﻿claim() function if it
is designed to be used only by AETH.

Alternatively, if the function is intended for public use, we suggest adding a comment to
indicate its public visibility and prevent the addition of sensitive operations in future
upgrades.

Status

This issue has been acknowledged by the team. The team has stated that the claim doesn’t
have any special context, it can be triggered without restrictions, the goal is to transfer ETH
to the treasury and staking pool.

12

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FeeRecipient_R1.sol#L62
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/AETH_R18.sol#L59-L62

7. Flawed implementation of totalSupply()

Severity: Low Category: Business logic

Target:
- legacy/contracts/upgrades/FETH_R18.sol

Description

In the FETH_R18 contract, users can use the lockShares() and unlockShares() functions to
swap between AETH (i.e. ankrETH) and FETH (i.e. aETHb). The _shares state variable is
used to track the locked amount for a user, and the balanceOf() function returns the FETH
balance of a user based on the _shares[user] value.

legacy/contracts/upgrades/FETH_R18.sol:L124-L127
function totalSupply() public view override returns (uint256) {

uint256 totalLocked = IERC20(_aEthContract).balanceOf(address(this));
return sharesToBonds(totalLocked);

}

However, the totalSupply() function in the FETH contract uses the contract’s AETH balance
as the total locked AETH shares. This could lead to issues because people can send AETH
token directly to the contract without using the lockShares() function. As a result, the sum of
locked user AETH shares may not equal the AETH balance in the contract. This means that
totalSupply()’s return value may not equal the sum of the balanceOf() for all the users, and
the caller of FETH’s totalSupply() may use this incorrect value in its subsequent logic.

Recommendation

Consider adding a state variable to track the total locked AETH amount in the contract. This
state variable can be updated whenever a user locks or unlocks AETH shares. We can then
use this variable in the ﻿totalSupply() function to return the correct total supply of FETH.

Status

This issue has been acknowledged by the team.

13

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#L73-L87
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#L96-L112
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#L30
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#L129-L132
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#L124-L127

8. Incorrect value logged in event

Severity: Low Category: Logging

Target:
- legacy/contracts/upgrades/FETH_R18.sol

Description

legacy/contracts/upgrades/FETH_R18.sol:L73-L87
function lockShares(uint256 shares) external {

address spender = msg.sender;
// transfer tokens from aETHc to aETHb
require(IERC20(_aEthContract).transferFrom(spender, address(this), shares), "can't

transfer");
// calc swap fee (default swap fee ratio is 0.3%=0.3/100*1e18, fee can't be greater

than 1%)
uint256 fee = shares.mul(_swapFeeRatio).div(1e18);
if (msg.sender == _swapFeeOperator) {

fee = 0;
}
uint256 sharesWithFee = shares.sub(fee);
// increase senders and operator balances
_shares[_swapFeeOperator] = _shares[_swapFeeOperator].add(fee);
_shares[spender] = _shares[spender].add(sharesWithFee);
emit Locked(spender, shares);

}

If the Locked() event in the code is meant to record the shares locked for a user, then the
lockShares() function should emit Locked(spender, shares.sub(fee)) instead.

Recommendation

Log the actual shares locked for a user in the Locked() event.

Additionally, to improve clarity, we recommend redesigning the Locked() event to event

Locked(address account, uint256 lockedShare, uint256 fee).

Status

The team has resolved this issue.

14

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#L73-L87

9. mint() does not return correct value

Severity: Low Category: Business logic

Target:
- legacy/contracts/upgrades/AETH_R18.sol

Description

legacy/contracts/upgrades/AETH_R18.sol:L92-L95
function mint(address account, uint256 amount) external returns (uint256 _amount) {

require(msg.sender == address(_bscBridgeContract) || msg.sender ==
address(_globalPoolContract), 'Not allowed');

_mint(account, amount);
}

The mint() function in the AETH_R18 contract is defined to return a uint256 value. However,
there is currently no return statement in this function, and the return parameter, _amount, is
not being updated in the function.

Recommendation

If the mint() function is meant to return a value, we suggest adding a return statement in the
function to return the correct value.

Alternatively, if the mint() function does not need to return a value, we recommend changing
its definition to function mint(address account, uint256 amount) external {...}. This will make
it clear that the function does not return a value.

Status

The team has resolved this issue.

15

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/AETH_R18.sol#L92-L95

2.3 Informational Findings

10. Mismatch between code and description

Severity: Informational Category: Code quality

Target:
- deposit-wrapper/contracts/DepositWrapper.sol
- legacy/contracts/upgrades/GlobalPool_R42.sol

Description

1. deposit-wrapper/contracts/DepositWrapper.sol:L186-L189
require(

newDepositAddr != pauseAddr,
"Deposit address must be different from deposit address"

);

The error message should be "Deposit address must be different from pause address".

2. legacy/contracts/upgrades/GlobalPool_R42.sol:L125
mapping(address => uint256) private _aETHProviderRewards; // slot:323

The comment states that the slot for _aETHProviderRewards is 323, but in reality, it is 328.

3. legacy/contracts/upgrades/GlobalPool_R42.sol:L615-L618
/**

@dev Slash eth, returns remaining needs to be slashed
*/
function slashETH(address provider, uint256 amount) public onlyOperator {

The comment indicates that the slashETH() should return a value. However, the slashETH()
is defined without a return value.

4. legacy/contracts/upgrades/GlobalPool_R42.sol:L361

require(amount >= _configContract.getConfig("UNSTAKE_MIN_AMOUNT"), "Value must be
greater than minimum amount");

The “greater than” should be “no less than”.

Recommendation

Align the description with the code.

Status

The team has resolved this issue.

16

https://github.com/Ankr-network/stakefi-smart-contract/blob/8a56a5b082d42806b0c0f0f0b768fdac27b97642/eth-deposit-wrapper/contracts/DepositWrapper.sol#LL186C1-L189C11
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L125
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L615-L618
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L361

11. Mixed use of reentrancy prevention modifiers

Severity: Informational Category: Reentrancy

Target:
- legacy/contracts/upgrades/GlobalPool_R42.sol

Description

In the GlobalPool_R42 contract, both the unlock() modifier and nonReentrant() modifier are
used to prevent reentrancy attacks. The issue with mixed use of them is that a function
modified by unlock() can enter a function modified by nonReentrant() and vice versa. In
other words, cross-function reentrancy is possible when you mix these two reentrancy
prevention modifiers in one contract.

Recommendation

Replace the unlock() modifier with the nonReentrant() modifier throughout the contract.

Status

The team has resolved this issue.

17

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/lib/Lockable.sol#L6-L11
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L169-L181

12. Missing reentrancy guard

Severity: Informational Category: Reentrancy

Target:
- legacy/contracts/upgrades/GlobalPool_R42.sol

Description

The nonReentrant() modifier can be added to the following functions in the GlobalPool_R42
contract to prevent the introduction of future reentrancy vulnerabilities:

- distributeRewards()
- claimManually()

Recommendation
Consider adding the nonReentrant() modifier to these functions.

Status

The team has resolved this issue.

18

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L169-L181
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L422
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L506

13. Can add old parameters to SwapFeeParamsChanged() event

Severity: Informational Category: Logging

Target:
- legacy/contracts/upgrades/FETH_R18.sol

Description

The SwapFeeParamsChanged() event only logs the new values, while the other “changed”
events (e.g. GlobalPoolAddressChanged()) log both the previous value and the new value.

To provide more information and context in the ﻿SwapFeeParamsChanged() event, we
suggest adding the old parameters to the event as well. This will allow developers and users
to see the previous values of the parameters and better understand the changes made to
the swap fee parameters.

Recommendation
Change

event SwapFeeParamsChanged(address operator, uint256 ratio);

To

event SwapFeeParamsChanged(address prevOperator, address newOperator, uint256 prevRatio,

uint256 newRatio);

and updating the event emitting code accordingly.

Status

The team has resolved this issue.

19

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#LL21C11-L21C31
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#LL18C11-L18C35

14. Lack of events

Severity: Informational Category: Logging

Target:
- legacy/contracts/upgrades/GlobalPool_R42.sol
- legacy/contracts/upgrades/FeeRecipient_R1.sol

Description

1. Lack of event when poolBalance is insufficient in distributeRewards()

When poolBalance is insufficient to distribute further rewards, the distributeRewards()
function does not emit relevant events. To enable off-chain tracking for this situation, an
event for this situation should be added to notify the team and allow them to take appropriate
action.

2. Lack of event in FeeRecipient’s claim() function

The claim() function in the FeeRecipient_R1 contract is a critical function that transfers funds
to the pool and the treasury. However, no relevant events are emitted in this function. To
enable off-chain tracking, we recommend defining an appropriate event and emitting it in the
claim() function.

Recommendation
Design proper events and add them to aforementioned functions.

Status

The team has acknowledged this issue.

20

https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L456-L458
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FeeRecipient_R1.sol#L59-L72

15. Redundant code

Severity: Informational Category: Redundancy

Target:
- timelock/time-lock/contracts/AnkrTimeLock.sol
- legacy/contracts/upgrades/FETH_R18.sol
- legacy/contracts/upgrades/GlobalPool_R42.sol

Description

1. timelock/time-lock/contracts/AnkrTimeLock.sol:L6-L7
// Uncomment this line to use console.log

// import "hardhat/console.sol";

The above lines are unnecessary and can be removed before deploying the contract.

2. The onlySwapFeeOperator() modifier in the FETH_R18 is defined but not used.

3. Logic that has been commented out can be removed.

Recommendation
Remove the redundant code.

Status

The team has resolved this issue.

21

https://github.com/Ankr-network/stakefi-smart-contract/blob/579d847cc0bd68d7305983bc14892933067a1171/time-lock/contracts/AnkrTimeLock.sol#L6-L7
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/FETH_R18.sol#L229C14-L232
https://github.com/Ankr-network/stakefi-smart-contract/blob/71a4183002a625fc6eeae024a68a4850547529e2/legacy/contracts/upgrades/GlobalPool_R42.sol#L251-L254

Appendix
Appendix 1 - Files in Scope
This audit covered the following files:

1. The DepositWrapper contract in pull request 514:

File SHA-1 hash

eth-deposit-wrapper/contracts/DepositWrapper.sol 7649c3e8b91e01fe7cab7228380f88d7c4fe2f76

2. The AnkrTimeLock contract in pull request 505:

File SHA-1 hash

time-lock/contracts/AnkrTimeLock.sol e6ddc47cafb6ae6c50c66d773c2fcd9ad48e3392

3. The following files in commit 71a4183:

File SHA-1 hash

legacy/contracts/Config.sol 6417bffeb53287b84a3cca96ffd6f2764c183f1c

legacy/contracts/Governable.sol a33d161fbee771da246e78643d69c942ec4b92d6

legacy/contracts/SystemParameters.sol 206aaaf1bf2e8a8add4e32b8593596031edaa433

legacy/contracts/WithdrawalPool.sol 59d754f3d47a5d02ce9fd72a13dbebd9dc9c5d63

legacy/contracts/lib/Lockable.sol d4cd0ba14a368e85494c28ae8a805628713e193d

legacy/contracts/lib/MathUtils.sol 744b1d9c802aa2720eb411c9399482ba9aa8f485

legacy/contracts/lib/Ownable_R1.sol 3292409bf77499da7569ba68dcf9bcc530e9a607

legacy/contracts/lib/Pausable.sol 47447228ed508e26ffea4bc42f2be3ec4325396e

legacy/contracts/lib/interfaces/IAETH.sol 876e6df562909ab6094dfe97e58a925438df420d

legacy/contracts/lib/interfaces/IConfig.sol 8fa3a101ba9369d5ced7fd323433d3dd93245c65

legacy/contracts/lib/interfaces/IDepositContract.sol e30792721e4299995549a296663fc19cbcaa27bf

legacy/contracts/lib/interfaces/IFETH.sol 1ef777e075775643d3a8883404e0ccf7cb36c048

legacy/contracts/lib/interfaces/IFeeRecipient.sol 23846760b12254494e94295177b9bc1d21461abc

legacy/contracts/lib/interfaces/IGlobalPool.sol 80dfe187de9eb9251b113f30ec2be11e65d541c9

22

https://github.com/Ankr-network/stakefi-smart-contract/pull/514/files
https://github.com/Ankr-network/stakefi-smart-contract/pull/505/files
https://github.com/Ankr-network/stakefi-smart-contract/tree/71a4183002a625fc6eeae024a68a4850547529e2

legacy/contracts/lib/interfaces/IWithdrawalPool.sol 5ff64705c97f87e87e1c742b768f6fff3f8b9c04

legacy/contracts/lib/openzeppelin/ERC20UpgradeS
afe.sol 1001e78c89b070e04c249242ebab224fc98e02cb

legacy/contracts/upgrades/AETH_R18.sol 7bd5a51b994825b6a005eee3cd122efd07b7027c

legacy/contracts/upgrades/FETH_R18.sol 206b34e1ebdf9cd0786afdc45d0cfcf620f9f13e

legacy/contracts/upgrades/GlobalPool_R42.sol a04393756d6dad654c501bb14c07876312fd4568

legacy/contracts/FeeRecipient.sol 11b399f4e60fb8f7d197cb081c441653fdeb000f

23

