


Overview

Project Summary

● Name: Avalon - AVAF
● Platform: EVM-compatible chains
● Language: Solidity
● Repository:

○ https://github.com/avalonfinancexyz/avaf
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Avalon - AVAF

Version v2

Type Solidity

Dates Jun 11 2024

Logs May 08 2024; Jun 11 2024

Vulnerability Summary

Total High-Severity issues 1

Total Medium-Severity issues 0

Total Low-Severity issues 3

Total informational issues 2

Total 6

Contact
E-mail: support@salusec.io

1

https://github.com/avalonfinancexyz/avaf


Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Users can use transferFrom() to bypass the logic in transfer() 6
2. Possible reentrancy in withdraw() 7
3. Third-party dependencies 8
4. Missing events for functions that change critical state 9

2.3 Informational Findings 10
5. The owner cannot remove support for a token in case of an emergency 10
6. Missing zero address checks 11

Appendix 12
Appendix 1 - Files in Scope 12

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4



Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Users can use transferFrom() to bypass the logic
in transfer()

High Business Logic Resolved

2 Possible reentrancy in withdraw() Low Reentrancy Resolved

3 Third-party dependencies Low Dependency Acknowledged

4 Missing events for functions that change critical
state

Low Logging Acknowledged

5 The owner cannot remove support for a token in
case of an emergency

Low Business Logic Acknowledged

6 Missing zero address checks Informational Data Validation Acknowledged

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Users can use transferFrom() to bypass the logic in transfer()

Severity: High Category: Business Logic

Target:
- contracts/reward/GovRevenueStaking.sol
- contracts/reward/StakingRewardPool.sol

Description

In the AVAF protocol, there are numerous specific handling logics for token transfers, but
there's a common oversight concerning transfers made using the transferFrom() function of
the ERC20 token standard.

contracts/reward/GovRevenueStaking.sol:L163-L165
function transfer(address, uint256) public virtual override returns (bool) {

revert("not allowed.");
}

contracts/reward/StakingRewardPool.sol:L134-L142
function transfer(

address to,
uint256 amount

) public virtual override returns (bool) {
super.transfer(to, amount);
boostConfigure.updateUser(msg.sender);
boostConfigure.updateUser(to);
return true;

}

When users perform token transfers using transferFrom(), they bypass the logic in the
transfer() function, which could potentially lead to unexpected results.

Recommendation

Consider overriding _transfer() to implement specific logic.

Status

The team has resolved this issue in commit 310936f.

6

https://github.com/avalonfinancexyz/avaf/commit/310936f0a69fb208e830f34aeb62bff050b25f92


2. Possible reentrancy in withdraw()

Severity: Low Category: Reentrancy

Target:
- contracts/reward/GovRevenueStaking.sol
- contracts/reward/StakingRewardPool.sol

Description

There are several places in the AVAF protocol that do not follow the Check-Effect-Interaction
rule, which may lead to a reentrancy attack.

contracts/reward/GovRevenueStaking.sol:L107-L117
function withdraw(

uint pid,
uint _amount

) external updateReward(msg.sender) {
...
stakeInfo[pid].stakingToken.safeTransfer(msg.sender, _amount);
boostConfigure.updateUser(msg.sender);

}

contracts/reward/StakingRewardPool.sol:L83-L88
function withdraw(uint _amount) external updateReward(msg.sender) {

...
stakingToken.safeTransfer(msg.sender, _amount);
boostConfigure.updateUser(msg.sender);

}

Since the tokens are transferred before the boost configuration is updated, it is possible to
perform a reentrancy attack if the token has some kind of call-back functionality, e.g. pBTC.

As the boostConfigure contract is a third-party contract, we can't be sure of the exact reentry
path. But we think it is best practice to always follow the Check-Effect-Interaction rule in
complicated call stacks.

Recommendation

It is recommended to follow the "Check-Effect-Interaction" rule in the code.

Status

The team has resolved this issue in commit 8f60e1a4.

7

https://etherscan.io/token/0x5228a22e72ccc52d415ecfd199f99d0665e7733b
https://github.com/avalonfinancexyz/avaf/commit/8f60e1a4f3de1f710fed47b195d1af6302e8f42d


3. Third-party dependencies

Severity: Low Category: Dependency

Target:
- contracts/vester/VesterManager.sol
- contracts/reward/GovRevenueStaking.sol

Description

The AVAF protocol relies on the checker contract to enable satisfaction checking, and the
boostConfigure contract to enable the calculation of rewards. The current audit treats
third-party entities as black boxes and assumes they are working correctly. However, in
reality, third parties could be compromised, resulting in the loss of user assets.

Recommendation

We understand that the business logic requires interaction with third parties. We encourage
the team to regularly monitor the statuses of third parties to reduce the impacts when they
are not functioning properly.

Status

This issue has been acknowledged by the team.

8



4. Missing events for functions that change critical state

Severity: Low Category: Logging

Target:
- contracts/tokens/baseToken.sol

Description

Events allow capturing the changed parameters so that off-chain tools/interfaces can
register such changes that allow users to evaluate them. Missing events do not promote
transparency and if such changes immediately affect users’ perception of fairness or
trustworthiness, they could exit the protocol causing a reduction in protocol users.

In the baseToken.sol, events are lacking in the privileged setter functions (e.g. setHandler()
and setMinter()).

Recommendation

It is recommended to emit events for critical state changes.

Status

This issue has been acknowledged by the team.

9



2.3 Informational Findings

5. The owner cannot remove support for a token in case of an
emergency

Severity: Informational Category: Business Logic

Target:
- contracts/reward/GovRevenueStaking.sol

Description

The owner does not have the ability to remove a token from the list of available tokens.

However, it should not be overlooked that the supported tokens can be hacked, and in
order to prevent such an attack from affecting the AVAF protocol, the contract should have
an appropriate emergency exit feature.

Recommendation

Consider adding an emergency exit function for removing a token from the support list
(stakeInfo[]).

Status

This issue has been acknowledged by the team.

10



6. Missing zero address checks

Severity: Informational Category: Data Validation

Target:
- contracts/reward/GovRevenueStaking.sol
- contracts/reward/StakingRewardsManager.sol

Description

It is considered a security best practice to verify addresses against the zero address during
initialization or setting. However, the following code does not verify addresses:

contracts/reward/GovRevenueStaking.sol:L47; L68-L72
constructor(

string memory name,
string memory symbol,
address _rewardToken

) ERC20(name, symbol) {
rewardsToken = IERC20(_rewardToken);

}

function addToken(IERC20 stakingToken) external onlyOwner {
_checkToken(stakingToken);
StakingTokenInfo storage newStakeToken = stakeInfo.push();
newStakeToken.stakingToken = stakingToken;

}

contracts/reward/StakingRewardsManager.sol:L21-L36
function addPool(

string memory name,
string memory symbol,
IERC20 stakingToken,
IERC20 rewardsToken

) external onlyOwner {
...
newPool.stakingToken = stakingToken;
newPool.rewardsToken = rewardsToken;

}

contracts/vester/LinearVester.sol:L19-L22
constructor(address _manager, uint256 _vestingDuration) {

vesterManager = _manager;
vestingDuration = _vestingDuration;

}

Recommendation

Consider adding zero address checks for address variables.

Status

This issue has been acknowledged by the team.

11



Appendix
Appendix 1 - Files in Scope
This audit covered the following files in commit b2df3bb:

File SHA-1 hash

Checker.sol 572787a995c6b7c369f77cbb767df477b25c6b17

GovRevenueStaking.sol 0c685bcbe600287f239417b91f5a1b10b828430f

StakingRewardPool.so 43e619a2ef3164754a72fc101922c42e9bdced91

StakingRewardsManager.sol d67e553797f49282c7014b93a9a10196f9c04e1a

AVAF.sol b045f9d7c925a3976b0b216a3ab43b64b176148f

baseToken.sol 2f470e4ad86c3b89f63ead2f2f75a98abede6937

esAVAF.sol 5daa6a51c214f5c178464892e38cb4b5b32dc819

stAVAF.sol a5c8c39ee5fb4611d1202f861a17a229cb8baa22

LinearVester.sol 77b64394c38cf31ebca720644f7b381a118e7b5f

Vester.sol 6381373350212d4ed6566b2ecf6419774d990dd7

VesterManager.sol a16dcd6f96375f0ab21ec195c760d308395eab43

12

https://github.com/avalonfinancexyz/avaf/commit/b2df3bb5d304b460dc948a0f1c71a3c6814145b8

