


Overview

Project Summary

● Name: BIGA - Arcade Incremental Audit
● Platform: EVM-compatible chains
● Language: Solidity
● Repository:

○ https://github.com/bigaarcade/arcade-sc
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name BIGA - Arcade Incremental Audit

Version v2

Type Solidity

Dates Oct 14 2024

Logs Sep 24 2024, Oct 14 2024

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 3

Total Low-Severity issues 2

Total informational issues 1

Total 6

Contact
E-mail: support@salusec.io

1

https://github.com/bigaarcade/arcade-sc


Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Missing withdrawnTotal reset 6
2. Centralization risk 7
3. Hard fork can potentially lead to replay attacks 8
4. Use call instead of transfer for native tokens transfer 9
5. Implementation contract could be initialized by everyone 10

2.3 Informational Findings 11
6. Redundant Code 11

Appendix 12
Appendix 1 - Files in Scope 12

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4



Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Missing withdrawnTotal reset Medium Business Logic Resolved

2 Centralization risk Medium Centralization Acknowledged

3 Hard fork can potentially lead to the reply attacks Medium Business Logic Resolved

4 Use call instead of transfer for native tokens
transfer

Low Business Logic Resolved

5 Implementation contract could be initialized by
everyone

Low Business Logic Resolved

6 Redundant code Informational Redundancy Resolved

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Missing withdrawnTotal reset

Severity: Medium Category: Business Logic

Target:
- contracts/BIGA.sol

Description

The contract imposes a limit on withdrawals during each window, ensuring that the total
amount withdrawn does not surpass the `withdrawalLimitAmount`. This limit is calculated
based on the contract's token balance and the amount already withdrawn within the current
withdrawal period.

However, when the withdrawal window resets, the `withdrawnTotal` from the previous window
remains intact. As a result, the `withdrawalLimitAmount` for the first transaction in the new
window may exceed expectations.

contracts/BIGA.sol:L187-L194
function withdraw(

address _tokenIn,

address _tokenOut,

uint256 _amountOut,

uint256 _nonce,

bytes calldata _signature

) external nonReentrant {

…
if (checkWindow()) {

require(withdrawnTotal[_tokenOut] + _amountOut <=

_withdrawalLimitAmount(_tokenOut), "GB08");

withdrawnTotal[_tokenOut] += _amountOut;

} else {

require(_amountOut <= _withdrawalLimitAmount(_tokenOut), "GB08");

withdrawnTotal[_tokenOut] = _amountOut;

windowStartTime = block.timestamp;

}

…
}

Recommendation
We recommend resets the `withdrawTotal` during the window restart.

Status

This issue has been resolved by the team with commit 2710122.

6

https://github.com/bigaarcade/arcade-sc/commit/27101227b8b93ab475898a93804c85a4af9734cd


2. Centralization risk

Severity: Medium Category: Centralization

Target:
- contracts/BIGA.sol

Description

In the `BIGA` contract, there exists a privileged role called `owner`. The `owner` has the
authority to modify critical parameters in the contract, such as `validator`, `withdrawalLimit`,
`windowDuration`, and the contract's `tokenWhitelist`.

If the `owner`'s private key is compromised, an attacker could modify these parameters to
steal tokens from the contract.

Recommendation
We recommend transferring privileged accounts to multi-sig accounts with timelock
governors for enhanced security. This ensures that no single person has full control over the
accounts and that any changes must be authorized by multiple parties.

Status

This issue has been acknowledged by the team. The team states that once the contract is
deployed, the privileged role will be assigned to a multi-sig account.

7



3. Hard fork can potentially lead to replay attacks

Severity: Medium Category: Configuration

Target:
- contracts/BIGA.sol

Description

The contract stores the `chainId` used for signature verification in a global variable, which
can only be initialized once. When a hard fork occurs, the `chainId` stored in the contract
will no longer match the current `chainId`.This introduces the risk of replay attacks.

contracts/BIGA.sol:L226-L241
function _validateWithdrawData(

bytes calldata _signature,

address _user,

address _tokenIn,

address _tokenOut,

uint256 _amountOut,

uint256 _nonce

) private {

bytes memory data = abi.encodePacked(chainId, _user, _tokenIn, _tokenOut,

_amountOut, _nonce);

data.verifySignature(_signature, validator, "GB04");

bytes32 dataHash = keccak256(data);

require(!hashUsed[dataHash], "GB05");

hashUsed[dataHash] = true;

}

Recommendation
We recommend not storing the `chainId` and instead retrieving it in real-time during
calculations.

Status

This issue has been resolved by the team with commit 2710122.

8

https://github.com/bigaarcade/arcade-sc/commit/27101227b8b93ab475898a93804c85a4af9734cd


4. Use call instead of transfer for native tokens transfer

Severity: Informational Category: Business logic

Target:
- contracts/BIGA.sol

Description

The transfer function is not recommended for sending native tokens due to its 2300 gas unit
limit which may not work with smart contract wallets or multi-sig. Instead, call can be used to
circumvent the gas limit.

contracts/BIGA.sol:L197-L203
function withdraw(

address _tokenIn,
address _tokenOut,
uint256 _amountOut,
uint256 _nonce,
bytes calldata _signature

) external nonReentrant {
…
// Withdraw token to user
if (_tokenOut == address(0)) {

payable(user).transfer(_amountOut);
} else {

_tokenOut.checkERC20("GB02");
IERC20(_tokenOut).safeTransfer(user, _amountOut);

}

emit Withdrawn(user, _tokenIn, _tokenOut, _amountOut, _nonce, chainId);
}

Recommendation

Consider using call instead of transfer for sending native token.

Status

This issue has been resolved by the team with commit 2710122.

9

https://github.com/bigaarcade/arcade-sc/commit/27101227b8b93ab475898a93804c85a4af9734cd


5. Implementation contract could be initialized by everyone

Severity: Low Category: Business Logic

Target:
- contracts/BIGA.sol

Description

According to OpenZeppelin, the implementation contract should not be left uninitialized.

An uninitialized implementation contract can be taken over by an attacker, which may
impact the proxy. There is nothing preventing the attacker from calling the initialize function
in BIGA’s implementation contract.

Recommendation

To prevent the implementation contract from being used, consider invoking the
_disableInitializers function in the constructor of the BIGA contract to automatically lock it
when it is deployed.

Status

This issue has been resolved by the team with commit 2710122.

10

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
https://github.com/bigaarcade/arcade-sc/commit/27101227b8b93ab475898a93804c85a4af9734cd


2.3 Informational Findings

6. Redundant Code

Severity: Informational Category: Redundancy

Target:
- contracts/BIGA.sol

Description

There are unnecessary checks in the `removeFromWhitelist` function. Since the token
address is already checked as ERC20 during addition, and if a token in the whitelist is later
updated in a way that causes `checkERC20` to revert, it would prevent the non-compliant
token from being removed from the whitelist.

contracts/BIGA.sol:L119-L128
function removeFromWhitelist(address[] calldata _tokens) external onlyOwner {

for (uint i = 0; i < _tokens.length; i++) {

if (_tokens[i] != address(0)) {

_tokens[i].checkERC20("GB02");

}

tokenWhitelist[_tokens[i]] = false;

}

emit TokenRemovedFromWhitelist(_tokens);

}

Recommendation

We recommend removing the `checkERC20` check from the `removeFromWhitelist` function.

Status

This issue has been resolved by the team with commit 2710122.

11

https://github.com/bigaarcade/arcade-sc/commit/27101227b8b93ab475898a93804c85a4af9734cd


Appendix
Appendix 1 - Files in Scope
This audit covered the following files in commit b005181:

File SHA-1 hash

BIGA.sol f626000ced4c9a3932f233efdade6ffbe3f64537

SafeCheck.sol d29f13a822681f26632d6b9cb5ab0f320bca5404

VerifySignature.sol 14c3471d18c40236b18b273c70439bed7ab8550c

12

https://github.com/bigaarcade/arcade-sc/commit/b0051815fd71eb2bdd5fb9e5fd4e3d0f45885dc7

