

Overview

Project Summary

● Name: La.Exchange
● Platform: EVM-compatible chains
● Language: Solidity
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name La.Exchange

Version v2

Type Solidity

Dates May 08 2025

Logs May 06 2025; May 08 2025

Vulnerability Summary

Total High-Severity issues 1

Total Medium-Severity issues 1

Total Low-Severity issues 3

Total informational issues 1

Total 6

Contact
E-mail: support@salusec.io

1

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4

1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Error in the logical execution condition of the _invest() function 6
2. Unexpected ETH should be refunded 7
3. Deposit reverts when totalCurrencyLast is consumed to 0 8
4. Missing slippage protect 9
5. Missing events for functions that change critical state 10

2.3 Informational Findings 11
6. Incorrect inheritance relationship 11

Appendix 12
Appendix 1 - Files in Scope 12

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Error in the logical execution condition of the
_invest() function

High Business Logic Resolved

2 Unexpected ETH should be refunded Medium Business Logic Resolved

3 Deposit reverts when totalCurrencyLast is
consumed to 0

Low Business Logic Acknowledged

4 Missing slippage protect Low Front-running Acknowledged

5 Missing events for functions that change critical
state

Low Configuration Acknowledged

6 Incorrect inheritance relationship Informational Business Logic Resolved

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Error in the logical execution condition of the _invest() function
Severity: High Category: Business Logic

Target:
- src/LaunchPool.sol

Description

There is a series of swap logic in the `_invest()` function that needs to be performed when
`value` is zero. But in fact, according to the design of the contract, the call between
`currency` and `underlying` should be performed when the value is not zero, while swap is
not required when the value is zero, and using zero as a swap parameter will result in an
error, which will cause the transaction to fail.

src/LaunchPool.sol:L134 - L150
function _invest(address account) internal {
 (uint quota, uint value, address[] memory path) = quotaDelta();
 if(value == 0) {
 if(value < totalCurrencyLast) {
 value = router.swapTokensForExactTokens(quota, totalCurrencyLast, path,
address(this), now)[0];
 } else {
 quota = router.swapExactTokensForTokens(value, 0, path, address(this),
now)[1];
 }
 totalCurrencyLast = totalCurrencyLast.sub(value);
 underlyingPerTokenLast =
underlyingPerTokenLast.add(quota.mul(denominator).div1(totalSupply));
 }
 lasttime = _align(now);
 if(account != address(0)) {
 underlyingLastOf[account] = underlyingOf(account);
 underlyingPerTokenOf[account] = underlyingPerTokenLast;
 }
}

Recommendation

It is recommended to refactor the conditional statements according to the contract design.

Status

This issue has been resolved by the team.

6

2. Unexpected ETH should be refunded
Severity: Medium Category: Business Logic

Target:
- src/LaunchPool.sol
- src/LaunchPool2.sol

Description

In both the `LaunchPool` and `LaunchPool2` contracts, the `deposit()` function uses the
payable modifier to receive eth, which is used to facilitate the user's deposit when `currency`
is `WETH`. However, when the `currency` is not `WETH`, the contract does not return the
unexpected `ETH` to the user, which may result in a loss of funds.

Recommendation

It is recommended that the `ETH` of the user's current transaction be refunded in the logical
branch of the user's deposited funds that is not `WETH`.

Status

This issue has been resolved by the team.

7

3. Deposit reverts when totalCurrencyLast is consumed to 0
Severity: High Category: Business Logic

Target:
- LaunchPool.sol

Description

In the deposit() function, when `totalSupply != 0` and `totalCurrencyLast == 0`, the function
exits early and refunds the user without processing the deposit. This scenario can arise
after `_invest()` consumes all of `totalCurrencyLast` (e.g., via `totalCurrencyLast =
totalCurrencyLast.sub(value))`, while `totalSupply` still remains non-zero. As a result, future
deposits are blocked, leading to denial-of-service for depositors and a stuck contract state
where no further capital can be added.

src/LaunchPool.sol:L68
function deposit(uint value) external payable invest(msg.sender) {

 uint amount;

 if(totalSupply == 0)

 amount = value;

 else if(totalCurrencyLast == 0) { // Finished

 if(msg.value > 0)

 //...

Recommendation

Redesign this part of the code to avoid the situation where `totalCurrencyLast == 0` under
normal circumstances, causing the contract to not operate normally.

Status

This issue has been acknowledged by the team. The `LaunchPool` contract has a defined
launch time. Since deposits are allowed before the launch time but `limited tokens` are not
released during this period, the issue mentioned above can be partially mitigated.

8

4. Missing slippage protect
Severity: Low Category: Front-running

Target:
- src/LaunchPool.sol
- src/LaunchPool2.sol

Description

Neither `LaunchPool` nor `LaunchPool2` imposes a minimum amount check on the received
`quota` tokens.Due to the lack of slippage protection, trades may encounter excessive
slippage and potential price manipulation, such as front-running.

src/LaunchPool.sol:L137 - L141
if(value < totalCurrencyLast) {
 value = router.swapTokensForExactTokens(quota, totalCurrencyLast, path,
address(this), now)[0];
} else {
 quota = router.swapExactTokensForTokens(value, 0, path, address(this), now)[1];
}

src/LaunchPool2.sol:L204 - L211
if(currency != currencies[0]) {
 ...
 quota = router.swapExactTokensForTokens(amount, 0, path0Und, address(this), now)[1];
} else
 quota = router.swapExactTokensForTokens(value, 0, path0Und, address(this), now)[1];

Recommendation

Consider setting some values for `amountOutMin` and `amountInMax`. This can be calculated
from oracles. Please refrain from using spot price for calculating because spot prices can
also be manipulated by the attacker.

Status

This issue has been acknowledged by the team.

9

5. Missing events for functions that change critical state
Severity: Low Category: Logging

Target:
- src/LaunchPool.sol
- src/LaunchPool2.sol
- src/LaunchSwapFactory.sol
- src/LimitedERC20.sol
- src/QuotaFarmingRouter.sol

Description

Events allow capturing the changed parameters so that off-chain tools/interfaces can
register such changes that allow users to evaluate them. Missing events do not promote
transparency and if such changes immediately affect users’ perception of fairness or
trustworthiness, they could exit the protocol causing a reduction in protocol users.

In the `LaunchPool`, `LaunchPool2`, `LaunchSwapFactory`, `LimitedERC20`,
`QuotaFarmingRouter` contracts, events are lacking in the privileged setter functions.

Recommendation

It is recommended to emit events for critical state changes.

Status

This issue has been acknowledged by the team.

10

2.3 Informational Findings

6. Incorrect inheritance relationship

Severity: Informational Category: Business Logic

Target:
- src/LaunchPool2.sol

Description

The `LaunchPool2` contract currently inherits from `ConstSepolia`, which is suitable for testing
or testnet deployment. However, for mainnet deployment, it should inherit from
`ConstEthereum` to ensure correct configuration and operational parameters.

src/LaunchPool2.sol:L29
contract LaunchPool2 is ConstSepolia

Recommendation

It is recommended to change the inheritance of `LaunchPool2` from `ConstSepolia` to
`ConstEthereum` before deploying to mainnet.

Status

This issue has been resolved by the team.

11

Appendix
Appendix 1 - Files in Scope
This audit covered the following files :

File SHA-1 hash

src/LaunchPool.sol 63f49a1561126871af9b1be4c9eee04f01871b9c

src/LaunchPool2.sol d7b2a41d7fa0a9c6f474062200b503b866bd5c9b

src/LaunchSwapFactory.sol 266320026f67177a12c5eaa7ed1a1a9872242840

src/LaunchSwapPair.sol 0ca0ea94a83e1c4bbff5be24fd149592715c63fd

src/LaunchSwapRouter02.sol 081f1744d93d2f078b3cd55e7b1a47df7e7a5822

src/LimitedERC20.sol 6e65ae621f4e523abd7899af3634ca74adaef52f

src/QuotaFarmingRouter.sol 6ef691828cdc425e3bf60082798b576e4463732c

src/UniswapV2ERC20.sol f0550560ad014ed78c6e945aaa17071019b23829

12

	
	
	
	Introduction
	1.1 About SALUS
	1.2 Audit Breakdown
	1.3 Disclaimer

	Findings
	2.1 Summary of Findings
	
	2.2 Notable Findings
	1. Error in the logical execution condition of the _invest() function
	2. Unexpected ETH should be refunded
	3. Deposit reverts when totalCurrencyLast is consumed to 0
	4. Missing slippage protect
	5. Missing events for functions that change critical state

	2.3 Informational Findings
	6. Incorrect inheritance relationship

	Appendix
	Appendix 1 - Files in Scope

