

Overview

Project Summary

●​ Name: QKN
●​ Platform: EVM-compatible chains
●​ Language: Solidity
●​ Address:

○​ coffeSaleProxy: 0x0a23271fa7a8dfb619e4e0eada11925a796f56fa
○​ masterChef: 0xA8c6AC8357f767EFcDee1753309d615a40334B69

●​ Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name QKN

Version v2

Type Solidity

Dates Aug 26 2025

Logs Aug 25 2025; Aug 26 2025

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 1

Total Low-Severity issues 4

Total informational issues 2

Total 7

Contact
E-mail: support@salusec.io

1

https://bscscan.com/address/0x0a23271fa7a8dfb619e4e0eada11925a796f56fa#code
https://qkiscan.io/address/0xA8c6AC8357f767EFcDee1753309d615a40334B69

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction​ 4

1.1 About SALUS​ 4
1.2 Audit Breakdown​ 4
1.3 Disclaimer​ 4

Findings​ 5
2.1 Summary of Findings​ 5
2.2 Notable Findings​ 6

1. Wrong totalAllocpoints update logic​ 6
2. Reward may be calculated incorrectly.​ 7
3. Price Increase Limited to One Day​ 9
4. Missmatch With comments​ 10
5. Missing events for functions that change critical state​ 11

2.3 Informational Findings​ 12
6. Missing two-step transfer ownership pattern​ 12
7. Lack of Security Contact Information for Responsible Disclosure​ 13

Appendix​ 14
Appendix 1 - Files in Scope​ 14

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

●​ Risky external calls
●​ Integer overflow/underflow
●​ Transaction-ordering dependence
●​ Timestamp dependence
●​ Access control
●​ Call stack limits and mishandled exceptions
●​ Number rounding errors
●​ Centralization of power
●​ Logical oversights and denial of service
●​ Business logic specification
●​ Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Wrong totalAllocpoints update logic Medium Business Logic Mitigated

2 Reward may be calculated incorrectly Low Business Logic Acknowledged

3 Price Increase Limited to One Day Low Business Logic Acknowledged

4 Missmatch With comments Low Access Control Acknowledged

5 Missing events for functions that change critical
state

Low Logging Acknowledged

6 Missing two-step transfer ownership pattern Informational Business logic Acknowledged

7 Lack of Security Contact Information for
Responsible Disclosure

Informational Configuration Acknowledged

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Wrong totalAllocpoints update logic
Severity: Medium Category: Business Logic

Target:
-​ masterChef.sol

Description

When a pool is created and receives its first deposit (assuming the deposit amount is x, and
x is not 0), totalAllocPoint = 0. At this time, the logic in the first if branch of the
`updatePoolAllocPoint` function will be executed, and `totalAllocPoint` will be updated to x.
However, in the last if branch, this value is updated again to `totalAllocPoint -
oldAllocPoint + pool.allocPoint`, which equals x - 0 + x = 2x. In this case, although there is
only one pool, this pool accounts for only 50% instead of the expected 100%.

This will result in the tokens minted to the contract not being fully distributed as rewards,
leaving a portion locked in the contract, and also causing users to receive fewer rewards
than expected.

Proof of Concept:
powerToken.mint(address(this), 1e18);​
powerToken.approve(address(chef), 1e18);​
uint poolId = chef.createPool();​
chef.deposit(1e18);​
​
vm.startPrank(address(0xabcd));​
chef.joinPool(1);​
powerToken.mint(address(0xabcd), 1e18);​
powerToken.approve(address(chef), 1e18);​
chef.deposit(1e18);​
vm.stopPrank();​
​
skip(100 minutes);​
​
chef.withdraw(1e18);​
​
vm.startPrank(address(0xabcd));​
chef.withdraw(1e18);​
assertEq(chef.pendingSushi(address(0xabcd)), 0);​
assertGt(token.balanceOf(address(chef)), 0);​
vm.stopPrank();

Recommendation

Consider modifying the update method of `totalAllocPoint` to ensure that it is updated to
the correct value each time.

6

Status

The impact of this issue diminishes as totalAllocPoint increases, with the error ratio
eventually becoming negligible. Based on the current on-chain data, the deviation is
already minor, and the project team has stated that it is acceptable.

7

2. Reward may be calculated incorrectly.
Severity: Low Category: Business Logic

Target:
-​ masterChef.sol

Description

masterChef.sol:L589 - L596
function pendingSushi(address _user) external view returns (uint256) {​
 ...​
 if (block.timestamp > pool.lastRewardTime && pool.allocPoint > 0 && totalAllocPoint
> 0) {​
 uint256 timeElapsed = block.timestamp - pool.lastRewardTime;​
 uint256 poolTimeReward = (timeElapsed * currentRewardPerSecond() *
pool.allocPoint) / totalAllocPoint; ​
 ...​
}

masterChef.sol:L612 - L613
function updatePool() public {​
 ...​
 uint256 timeElapsed = block.timestamp - pool.lastRewardTime;​
 uint256 sushiReward = timeElapsed * currentRewardPerSecond();​
 ...​
}

masterChef.sol:L666 - L667

function updatePoolReward(uint256 poolId) public {​
 ... ​
 if (currentTime > pool.lastRewardTime) {​
 uint256 timeElapsed = currentTime - pool.lastRewardTime;​
 uint256 poolTimeReward = (timeElapsed * currentRewardPerSecond() *
pool.allocPoint) / totalAllocPoint;​
 ...​
 }​
}

After calling the `Halving` function to reduce rewards by half, `BlockRewards` is updated to the
halved value. If `lastRewardTime` is before the halving point and the current time is after, the
entire reward calculation will use the post-halving `BlockRewards`. As a result, rewards
accrued between `lastRewardTime` and the halving time are also calculated using the reduced
rate, leading to a smaller-than-expected reward. This discrepancy causes an incorrect
`accRewardPerShare`, which in turn results in subsequent users’ rewards being miscalculated
and deviating from the expected values.

Proof of Concept:

powerToken.mint(address(this), 1e18);​
powerToken.approve(address(chef), 1e18);​
uint poolId = chef.createPool();​
assertEq(poolId, 1);​
chef.deposit(1e18);​
assertEq(chef.pendingSushi(address(this)), 0);​

8

​
skip(chef.HALVING_INTERVAL());​
uint rewards = chef.pendingSushi(address(this));​
​
chef.Halving();​
assertLt(chef.pendingSushi(address(this)), rewards);

Recommendation

Consider updating the global reward calculation parameters for the period between
`lastRewardTime` and the timestamp when the `Halving` function is called, before actually
performing the halving. This ensures that subsequent reward calculations remain correct.

Status

This issue has been acknowledged by the team，and promised to notify users

9

3. Price Increase Limited to One Day
Severity: Low Category: Business Logic

Target:
-​ coffeeSaleProxy.sol

Description

coffeeSaleProxy.sol:L239 - L244
function updatePrice() public {​
 if (block.timestamp >= lastPriceUpdateTime + 1 days) {​
 powerPerUsdt = powerPerUsdt * (PRICE_DENOMINATOR + priceIncreasePerDay) /
PRICE_DENOMINATOR;​
 lastPriceUpdateTime += 1 days;​
 }​
}

The `updatePrice` function increases the price in the contract based on the number of days
elapsed, but it only increases the price for one day in the contract. Even if the `updatePrice`
function has not been called for a long time, it will only increase the price for one day, which
is inconsistent with the contract design

Recommendation

It is recommended that prices be increased based on the actual time elapsed.

Status

This issue has been acknowledged by the team.

10

4. Missmatch With comments
Severity: Low Category: Access Control

Target:
-​ masterChef.sol

Description

coffeeSaleProxy.sol:L874 - L894
// 手動更新指定礦池的分配點數（管理員功能）​
function updatePoolAllocPointManually(uint256 poolId) external {​
 require(poolId > 0 && poolId < nextPoolId, "Invalid pool ID");​
 require(pools[poolId].creator != address(0), "Pool does not exist");​
 updatePoolAllocPoint(poolId);​
}​
​
function setmaxPower() public {​
 maxPower = maxPower * 2;​
}​
 ​
 ​
// 批量更新礦池收益（可選，用於管理員或緊急情況）​
function updateMultiplePoolsReward(uint256[] calldata poolIds) external {​
 for (uint256 i = 0; i < poolIds.length; i++) {​
 uint256 poolId = poolIds[i];​
 if (poolId > 0 && poolId < nextPoolId && pools[poolId].creator != address(0)) {​
 updatePoolReward(poolId);​
 }​
 }​
}

The comments in the contract indicate that all functions are administrator functions, but in
fact, these functions have not been given administrator call permissions. Although the
`updatePoolAllocPointManually()` and `updateMultiplePoolsReward()` functions do not cause
any problems, the `setmaxPower()` function causes `maxPower` to be infinitely amplified.

Recommendation

It is recommended to add permission controls to several functions as noted in the
comments.

Status

This issue has been acknowledged by the team.

11

5. Missing events for functions that change critical state
Severity: Low Category: Logging

Target:
-​ All

Description

Events allow capturing the changed parameters so that off-chain tools/interfaces can
register such changes that allow users to evaluate them. Missing events do not promote
transparency and if such changes immediately affect users’ perception of fairness or
trustworthiness, they could exit the protocol causing a reduction in protocol users.

In the `coffeeSaleProxy` contract, events are lacking in the `updatePrice()`,
`setUsdtReceiver()`, `withdraw()`functions.

In the `MasterChef` contract, events are lacking in the `Halving()`, `updatePool()`,
`updatePoolAllocPoint()`, `updatePoolReward()`, `createPool()`, `joinPool()`
,`leavePool()`,`takerWithdraw()`,`updatePoolAllocPointManually()`,`setmaxPower()`,`updateMulti
plePoolsReward()`functions.

Recommendation

It is recommended to emit events for critical state changes.

Status

This issue has been acknowledged by the team.

12

2.3 Informational Findings

6. Missing two-step transfer ownership pattern

Severity: Informational Category: Business logic

Target:
-​ All

Description

All contracts inherit from the `Ownable` contract. This contract does not implement a two-step
process for transferring ownership. Thus, ownership of the contract can easily be lost when
making a mistake in transferring ownership.

Recommendation

Consider using the Ownable2Step contract from OpenZeppelin instead.

Status

This issue has been acknowledged by the team.

13

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

7. Lack of Security Contact Information for Responsible
Disclosure

Severity: Informational Category: Configuration

Target:
-​ All

Description

All contracts do not specify a security contact point. Including a designated security contact
(such as an email address or ENS name) in the contract’s NatSpec header facilitates
responsible vulnerability disclosure. This makes it easier for external researchers to quickly
reach the appropriate team in the event a vulnerability is identified, helping minimize the
time window between discovery and mitigation. The Ethereum community has begun
standardizing this practice using the `@custom:security-contact` tag, adopted by tools such
as OpenZeppelin Wizard and ethereum-lists.

Recommendation

Consider adding a NatSpec comment at the top of the contract with a

`@custom:security-contact` field pointing to the preferred disclosure channel.

Status

This issue has been acknowledged by the team.

14

Appendix
Appendix 1 - Files in Scope
This audit covered the following files in address

0x0a23271Fa7a8DFB619e4e0eadA11925a796f56fa and

0xA8c6AC8357f767EFcDee1753309d615a40334B69:

File SHA-1 hash

coffeeSaleProxy.sol e85a3a43d4807140aa37385460c8ac1d6a3800e1

masterChef.sol 4d20c465700a2d9b2ae0ec5a7b13433d239d5009

15

https://bscscan.com/address/0x0a23271fa7a8dfb619e4e0eada11925a796f56fa#code
https://qkiscan.io/address/0xA8c6AC8357f767EFcDee1753309d615a40334B69?tab=contract

	
	
	
	Introduction
	1.1 About SALUS
	1.2 Audit Breakdown
	1.3 Disclaimer

	Findings
	2.1 Summary of Findings
	
	2.2 Notable Findings
	1. Wrong totalAllocpoints update logic
	2. Reward may be calculated incorrectly.
	3. Price Increase Limited to One Day
	4. Missmatch With comments
	5. Missing events for functions that change critical state

	2.3 Informational Findings
	6. Missing two-step transfer ownership pattern
	7. Lack of Security Contact Information for Responsible Disclosure

	Appendix
	Appendix 1 - Files in Scope

