

Overview

Project Summary

●​ Name: ZeroBase - V2
●​ Platform: EVM-compatible chains
●​ Language: Solidity
●​ Repository:

○​ https://github.com/ZeroBase-Pro/ZKFi
●​ Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name ZeroBase - V2

Version v2

Type Solidity

Dates Sep 16 2025

Logs Aug 22 2025; Sep 16 2025

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 0

Total Low-Severity issues 3

Total informational issues 2

Total 5

Contact
E-mail: support@salusec.io

1

https://github.com/ZeroBase-Pro/ZKFi/

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction​ 4

1.1 About SALUS​ 4
1.2 Audit Breakdown​ 4
1.3 Disclaimer​ 4

Findings​ 5
2.1 Summary of Findings​ 5
2.2 Notable Findings​ 6

1. Centralization risk​ 6
2. The deprecated admin still retains the pause permission​ 7
3. Lack of remove supported token function​ 8

2.3 Informational Findings​ 9
4. Unnecessary lastRewardUpdateTime update​ 9
5. Gas optimization suggestions​ 10

Appendix​ 11
Appendix 1 - Files in Scope​ 11

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

●​ Risky external calls
●​ Integer overflow/underflow
●​ Transaction-ordering dependence
●​ Timestamp dependence
●​ Access control
●​ Call stack limits and mishandled exceptions
●​ Number rounding errors
●​ Centralization of power
●​ Logical oversights and denial of service
●​ Business logic specification
●​ Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Centralization risk Low Centralization Acknowledged

2 The deprecated admin still retains the pause
permission

Low Business Logic Acknowledged

3 Lack of remove supported token function Low Business Logic Acknowledged

4 Unnecessary lastRewardUpdateTime update Informational Redundancy Acknowledged

5 Gas optimization suggestions Informational Gas
Optimization

Acknowledged

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Centralization risk

Severity: Low Category: Centralization

Target:
-​ V2/src/WithdrawVault.sol
-​ V2/src/Vault.sol

Description

In the Vault contract, there exists one privileged role, `DEFAULT_ADMIN_ROLE`. The role has the
authority to execute some key functions such as `setRewardRate`, `setPenaltyRate` and
`setCeffu`, etc.

If the role's private key is compromised, an attacker could trigger these functions to steal
remaining funds in the vault.

V2/src/Vault.sol: L714-L720
function setCeffu(address _newCeffu) external onlyRole(DEFAULT_ADMIN_ROLE) {​
 Utils.CheckIsZeroAddress(_newCeffu);​
 require(_newCeffu != ceffu);​
​
 emit UpdateCeffu(ceffu, _newCeffu);​
 ceffu = _newCeffu;​
}

Recommendation

We recommend transferring privileged accounts to multi-sig accounts with timelock
governors for enhanced security. This ensures that no single person has full control over
the accounts and that any changes must be authorized by multiple parties.

Status

This issue has been acknowledged by the team.

6

2. The deprecated admin still retains the pause permission
Severity: Low Category: Business Logic

Target:
-​ V2/src/WithdrawVault.sol

Description

The changeAdmin function updates the contract admin but does not reassign the
`PAUSER_ROLE`. This can leave the previous admin with `pause/unpause` privileges, resulting in
inconsistent access control and potential abuse.

V2/src/WithdrawVault.sol: L24-L41, L83-L87
constructor(address[] memory tokens, address admin, address bot, address _ceffu) {​
 ...​
 // Grant admin roles​
 _grantRole(DEFAULT_ADMIN_ROLE, admin);​
 _grantRole(PAUSER_ROLE, admin);​
 _grantRole(BOT_ROLE, bot);​
}​
function changeAdmin(address _admin) external onlyRole(DEFAULT_ADMIN_ROLE) {​
 require(_admin != address(0), "Admin address cannot be zero");​
 _revokeRole(DEFAULT_ADMIN_ROLE, msg.sender);​
 _grantRole(DEFAULT_ADMIN_ROLE, _admin);​
}

Recommendation

Add a revoke for the `PAUSER_ROLE` in the `changAdmin` function.

Status

This issue has been acknowledged by the team.

7

3. Lack of remove supported token function
Severity: Low Category: Business Logic

Target:
-​ V2/src/WithdrawVault.sol
-​ V2/src/Vault.sol

Description

The contract lacks a mechanism to remove supported tokens. Once a token has been
added, it cannot be removed from the system even if it has a security vulnerability or needs
to be delisted, which increases the overall security risk for the contract.

Recommendation

Implement an admin function that allows for the removal or deactivation of tokens.

Status

This issue has been acknowledged by the team.

8

2.3 Informational Findings

4. Unnecessary lastRewardUpdateTime update

Severity: Informational Category: Redundancy

Target:
-​ V2/src/Vault.sol

Description

When users want to transfer their shares, we will update both `from` and `to` accounts’
reward state.

The problem here is that in the function `_updateRewardState`, we will update this
account’s lastRewardUpdateTime. But we will update this again in the function
`_assetsInfoUpdate`. This update is redundant.

V2/src/Vault.sol: L592-L615
function _assetsInfoUpdate(address token, address from, address to, uint256 amount,
uint256 tokenBefore) internal{​
 _updateRewardState(from, token);​
 _updateRewardState(to, token);​
 …​
 assetsInfoTo.lastRewardUpdateTime = block.timestamp ;​
}

V2/src/Vault.sol: L494-L512
function _updateRewardState(address _user, address _token) internal {​
 AssetsInfo storage assetsInfo = userAssetsInfo[_user][_token];​
 …​
 newAccumulatedRewardForAll = _getClaimableRewards(address(this), _token);​
 // This user's rewards will be recorded into the accumulatedReward.​
 assetsInfo.accumulatedReward = newAccumulatedReward;​
 // update the last reward update time.​
 assetsInfo.lastRewardUpdateTime = block.timestamp;​
​
 _lastRewardUpdatedTime[_token] = block.timestamp;​
 totalRewardsAmountByToken[_token] = newAccumulatedRewardForAll;​
}

Recommendation

Suggest removing the unnecessary lastRewardUpdateTime update.

Status

This issue has been acknowledged by the team.

9

5. Gas optimization suggestions

Severity: Informational Category: Gas Optimization

Target:
-​ V2/src/Vault.sol

Description

Finding 1: The function `transferOrTransferFrom` is declared as `public`, but there is no
indication that it needs to be called internally by the contract.

Using `public` instead of `external` introduces unnecessary overhead, since Solidity will
copy input arguments into memory. Declaring the function as `external` can save a small
amount of gas on external calls.

V2/src/Vault.sol: L548-L569
function transferOrTransferFrom(address token, address from, address to, uint256 amount)
public returns (bool) {​
 …​
}

Finding 2: Memory reading saves more gas than storage reading multiple times when the
state is not changed. So caching the storage variables in memory and using the memory
instead of storage reading is effective. Cache array length outside of the loop can save gas.

V2/src/Vault.sol:L278, L320
for(uint256 i = 0; i < pendingClaimQueueIDs.length; i++) {

Recommendation

Consider using the above suggestions to save gas.

Status

This issue has been acknowledged by the team.

10

Appendix
Appendix 1 - Files in Scope
This audit covered the following files in commit 3391353:

File SHA-1 hash

V2/src/IVault.sol c0805d4be6a97c36cf2cf8ae30462abdd6fa0c7d

V2/src/IzkToken.sol 59f56ae27e26003e909bf8e944375549703ee61a

V2/src/IWithdrawVault.sol cc903f6d1e58f87a8f358c60bfe79e83abcd419d

V2/src/utils.sol 787b1f5b70928dd2a6767541f6628777c2361b2f

V2/src/Vault.sol e14530676bb327831d3361611062afcda4b88317

V2/src/WithdrawVault.sol b0874a98d72ab698177344e2fc6ed28cff60d3d4

V2/src/zkToken.sol 825d0ecd48564f77477d89295c20c7cb9d24d832

11

https://github.com/ZeroBase-Pro/ZKFi/commit/3391353f061de10618840fe8a4265d601231318a

	
	
	
	Introduction
	1.1 About SALUS
	1.2 Audit Breakdown
	1.3 Disclaimer

	Findings
	2.1 Summary of Findings
	
	2.2 Notable Findings
	1. Centralization risk
	2. The deprecated admin still retains the pause permission
	3. Lack of remove supported token function

	2.3 Informational Findings
	4. Unnecessary lastRewardUpdateTime update
	5. Gas optimization suggestions

	Appendix
	Appendix 1 - Files in Scope

