

Overview

Project Summary

● Name: Day of Defeat
● Platform: BNB Smart Chain
● Language: Solidity
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Day of Defeat

Version v6

Type Solidity

Dates August 07 2023

Logs July 04 2023; July 13 2023; July 14 2023;
July 25 2023; July 31 2023; August 07 2023

Vulnerability Summary

Total High-Severity issues 2

Total Medium-Severity issues 5

Total Low-Severity issues 5

Total informational issues 10

Total 22

Contact
E-mail: support@salusec.io

1

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 7

1. DoS by front-running the transactions that set a new pool 7
2. Use of testnet addresses 9
3. Incorrect function calls to V3 routers 10
4. The absence of decimal checks could lead to incorrect supply control 11
5. SwapAmount should be cached before calculating the tax 12
6. Transfers unrelated to liquidity pools may be blocked due to inappropriate checks 13
7. Centralization risk 14
8. Transfer can be blocked when _poolCA is not set 15
9. Precision loss in prize tax calculation 16
10. Incomplete update of the excluded lists and allowances 17
11. Insecure access control for _hasLimits() 18
12. No need to authenticate the caller in view functions 19

2.3 Informational Findings 20
13. Use of floating pragma 20
14. Missing two-step transfer ownership pattern 21
15. Inconsistent use of router address in event emission 22
16. Unexpected revert if the total supply is 0 23
17. Defined but unused events 24
18. Inappropriate error message 25
19. Missing zero address check 26
20. Redundant variables 29
21. Redundant code 30
22. Gas Optimization Suggestions 32

Appendix 34
Appendix 1 - Files in Scope 34

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 DoS by front-running the transactions that set a
new pool

High Denial of
Service

Acknowledged

2 Use of testnet addresses High Configuration Resolved

3 Incorrect function calls to V3 routers Medium Denial of
Service

Resolved

4 The absence of decimal checks could lead to
incorrect supply control

Medium Numerics Resolved

5 SwapAmount should be cached before
calculating the tax

Medium Business Logic Resolved

6 Transfers unrelated to liquidity pools may be
blocked due to inappropriate checks

Medium Denial of
Service

Resolved

7 Centralization risk Medium Centralization Mitigated

8 Transfer can be blocked when _poolCA is not set Low Business Logic Resolved

9 Precision loss in prize tax calculation Low Numerics Resolved

10 Incomplete update of the excluded lists and
allowances

Low Business Logic Resolved

11 Insecure access control for _hasLimits() Low Access Control Resolved

12 No need to authenticate the caller in view
functions

Low Data Validation Acknowledged

13 Use of floating pragma Informational Configuration Resolved

14 Missing two-step transfer ownership pattern Informational Business logic Resolved

15 Inconsistent use of router address in event
emission

Informational Logging Resolved

16 Unexpected revert if the total supply is 0 Informational Code Quality Resolved

17 Defined but unused events Informational Logging Resolved

18 Inappropriate error message Informational Code Quality Resolved

5

19 Missing zero address check Informational Data Validation Resolved

20 Redundant variables Informational Redundancy Resolved

21 Redundant code Informational Redundancy Resolved

22 Gas Optimization Suggestions Informational Gas
Optimization

Resolved

6

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. DoS by front-running the transactions that set a new pool

Severity: High Category: Denial of Service

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

When setting a new liquidity pool in the DOD_Token_2_1_03 contract, it will first check the
pool's existence. If the pair already exists or if isLiqPool[lpCA] is true, the transaction will be
reverted. However, if a pair does not exist, an attacker can front-run to create the target
new pair. In this scenario, although isLiqPool[lpCA] is false, lpCA will never be added.

DOD_Token_2_1_03.sol:L314-L316
lpCA = IFactoryV2(IDexRouterV2(V2ROUTER).factory()).getPair(_LPTargetCoinCA,
address(this));
require(lpCA == address(0) && !isLiqPool[lpCA], "StudioL_Token: Pair already exists!");
lpCA = IFactoryV2(IDexRouterV2(V2ROUTER).factory()).createPair(_LPTargetCoinCA,
address(this));

Similar to the above, in the Legacy_Stable_1_0 contract, it only verifies whether
isLiqPool[lpCA] is false before calling IFactoryV2.createPair or IFactoryV3.createPool.
However, if the pair or the pool exists, the call to IFactoryV2.createPair or
IFactoryV3.createPool will fail due to the inclusion of an existence check.

LUSD_Token_1_0.sol:L267-L275
if(_V2orV3) {

lpCA = IFactoryV2(factoryCAperDex[_router]).getPair(_LPTargetCoinCA,
address(this));

require(!isLiqPool[lpCA], "StudioL_Token: Pair already exists!");
lpCA = IFactoryV2(factoryCAperDex[_router]).createPair(_LPTargetCoinCA,

address(this));
} else {

lpCA = IFactoryV3(factoryCAperDex[_router]).getPool(_LPTargetCoinCA,
address(this), 3000);

require(!isLiqPool[lpCA], "StudioL_Token: Pool already exists!");
lpCA = IFactoryV3(factoryCAperDex[_router]).createPool(_LPTargetCoinCA,

address(this), 3000);
}

Recommendation

Consider modifying the require statement from lpCA == address(0) && !isLiqPool[lpCA] to
!isLiqPool[lpCA] in the DOD_Token_2_1_03 contract, and executing the creation only when
a pair or a pool does not exist.

7

Status

This issue has been acknowledged by the team.

8

2. Use of testnet addresses

Severity: High Category: Configuration

Target:
- DOD_Token_2_1_03.sol

Description

The constants V2ROUTER and V3ROUTER have been set to testnet addresses in the
DOD_Token_2_1_03 contract.

DOD_Token_2_1_03.sol:L66-L69
address constant public V2ROUTER = 0xD99D1c33F9fC3444f8101754aBC46c52416550D1;
// Uniswap V2 = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D, PCS V3 Mainnet =
0x10ED43C718714eb63d5aA57B78B54704E256024E, Testnet =
0xD99D1c33F9fC3444f8101754aBC46c52416550D1
address constant public V3ROUTER = 0x9a489505a00cE272eAa5e07Dba6491314CaE3796;
// Uniswap V3 = 0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45, PCS V3 Mainnet =
0x13f4EA83D0bd40E75C8222255bc855a974568Dd4, Testnet =
0x9a489505a00cE272eAa5e07Dba6491314CaE3796

Recommendation

Consider configuring the correct addresses for the routers before deploying to the mainnet.

Status

This issue has been resolved by the team. The V2 router can be updated by the owner.

9

3. Incorrect function calls to V3 routers

Severity: Medium Category: Denial of Service

Target:
- LUSD_Token_1_0.sol

Description

In the syncNativeANDStablePairs function, if _syncNativeCoin is true and there is a V3 pool
with pairedIsNative equal to true, the transaction will be reverted since there is no
getAmountsOut function in the V3 router.

LUSD_Token_1_0.sol:L461-L480
if (_syncNativeCoin && LiqPool.pairedIsNative) {

uint256 ourPathCoin0Balance = IERC20(pathCoin0).balanceOf(poolAddr);
uint256 ourLUSDBalance = _tOwned[poolAddr];

amounts = IDexRouterV2(LiqPool.dexCA).getAmountsOut(ourPathCoin0Balance,
refPath);

if(ourLUSDBalance > amounts[1]) { // ourLUSDBalance is over

_supplyControl(poolAddr, (ourLUSDBalance - amounts[1]), false); // Match
the stablecoin amount

} else if(ourLUSDBalance < amounts[1]) { // ourLUSDBalance is short

_supplyControl(poolAddr, (amounts[1] - ourLUSDBalance), true); // Match the
stablecoin amount

}
if(LiqPool.V2orV3) {

IPairV2(poolAddr).sync();
}
emit PoolSynced(_msgSender(), LiqPool.pairedCoinCA, poolAddr, true,

block.timestamp);
}

Recommendation

Consider implementing a validation step before retrieving the amount. For V3 routers,
consider using Quoter.quoteExactInput() to get the amount out received for a given exact
input swap.

Status

This issue has been resolved by the team. The team chose to only use v2Router.

10

https://docs.uniswap.org/contracts/v3/reference/periphery/lens/Quoter#quoteexactinput

4. The absence of decimal checks could lead to incorrect supply
control

Severity: Medium Category: Numerics

Target:
- LUSD_Token_1_0.sol

Description

In the syncNativeANDStablePairs function, the current balances of token0 and token1 in
the pool are checked before the minting or burning process. Then, a comparison is made to
determine the required amount of LUSD tokens to be minted or burned.

LUSD_Token_1_0.sol:L483-L492
uint256 pairedCoinBalance = IERC20(LiqPool.pairedCoinCA).balanceOf(poolAddr);

if(pairedCoinBalance > _tOwned[poolAddr]) {

_supplyControl(poolAddr, (pairedCoinBalance - _tOwned[poolAddr]), true);

} else if(pairedCoinBalance < _tOwned[poolAddr]){

_supplyControl(poolAddr, (_tOwned[poolAddr] - pairedCoinBalance), false);
}

LUSD has 18 decimals, but if the corresponding token has a different number of decimals
(for example, USDT which has 6 decimals on the ETH network or other), minting or burning
may result in an unbalanced state, leading to significant deviation in the price of LUSD.

Recommendation

It is necessary to compare decimals before performing calculations involving token
amounts.

Status

This issue has been resolved by the team. The pairedCoinBalance will be normalized before
calculation if the decimals of pairedCoinCA are not equal to 18.

11

5. SwapAmount should be cached before calculating the tax

Severity: Medium Category: Business Logic

Target:
- DOD_Token_2_1_03.sol

Description

The contractSwap() does not cache the swapAmout parameter to a temporary variable. As
a result, the updated swapAmount is used for the second tax calculation and all subsequent
calculations, leading to incorrect tax calculation results. The vulnerability arises because
the swapAmount is reduced after each tax calculation, which affects the subsequent tax
calculations.

The code below illustrates the calculation of the first two taxes, with the referralTax utilizing
the updated swapAmount.

DOD_Token_2_1_03.sol:L633-L651
if(stakingTax > 0) {

transferBalance = ((swapAmount * stakingTax) / totalTax);
_tOwned[stakingPool] += transferBalance;
_tOwned[address(this)] -= transferBalance;
emit Transfer(address(this), stakingPool, transferBalance);

swapAmount -= transferBalance;
transferBalance = 0;

}

if(referralTax > 0) {
transferBalance = ((swapAmount * referralTax) / totalTax);
_tOwned[referralPool] += transferBalance;
_tOwned[address(this)] -= transferBalance;
emit Transfer(address(this), referralPool, transferBalance);

swapAmount -= transferBalance;
transferBalance = 0;

}

Recommendation

Consider caching the swapAmount to a separate variable before the tax calculations. This
will ensure that the original swapAmount value is used for all tax calculations.

Status

This issue has been resolved by the team.

12

6. Transfers unrelated to liquidity pools may be blocked due to
inappropriate checks

Severity: Medium Category: Denial of Service

Target:
- DOD_Token_2_1_03.sol

Description

Because _poolCA is a state variable, when the transfer is not related to liquidity pools (i.e.
other is set to true), the value of _poolCA is the value set in the previous transfer related to
liquidity pools. As a result, if _hasLimits(from, to) is true and the trading is disabled for the
previously set pool, the transaction will be reverted.

DOD_Token_2_1_03.sol:L552-L572
if (isLiqPool[from]) {

buy = true;
_poolCA = from;

} else if (isLiqPool[to]) {
sell = true;
_poolCA = to;

} else {
other = true;

}
uint8 index = searchLiqPool(_poolCA);
LPool memory poolInfo = liqPoolList[address(this)][index];

if(_hasLimits(from, to)) {
if(poolInfo.tradingPauseTime != 0) {

if(getRemainingPauseTimeInSecs(poolInfo.poolCA) == 0) {
liqPoolList[address(this)][index].tradingEnabled = true;
liqPoolList[address(this)][index].tradingPauseTime = 0;

}
}
require(liqPoolList[address(this)][index].tradingEnabled, "StudioL_Token: Trading

not enabled!");
}

Recommendation

It is recommended to check whether the trading is enabled only when buy or sell is true.

Status

This issue has been resolved by the team.

13

7. Centralization risk

Severity: Medium Category: Centralization

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

The DOD_Token_2_1_03 and Legacy_Stable_1_0 contracts have privileged accounts.

The owner of the DOD_Token_2_1_03 contract can modify all the configurations and is
granted permission to manipulate all the DOD tokens in the V2ROUTER and all the assets in
the DOD_Token_2_1_03 contract.

When the Legacy_Stable_1_0 contract is deployed, the initial supply of LUSD tokens are
sent to the _operator. The operator can distribute LUSD tokens without the consensus of the
community. Meanwhile, the operator can modify the critical configurations and is granted
permission to manipulate all the LUSD tokens in pools and routers, as well as all the assets
in the contract.

Should the owner’s or operator’s private key be compromised, an attacker can sweep all the
funds in the contract or change the configuration as desired. If the privileged accounts are
plain EOA accounts, this can be worrisome and pose a risk to the other users.

Recommendation

We recommend transferring privileged accounts to multi-sig accounts with timelock
governors for enhanced security. This ensures that no single person has full control over the
accounts and that any changes must be authorized by multiple parties.

Status

This issue has been mitigated by the team. The owner account will be transferred to a
multi-sig account upon the launch.

14

8. Transfer can be blocked when _poolCA is not set

Severity: Low Category: Business Logic

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

The _poolCA in the DOD_Token_2_1_03 contract and poolAddr in the Legacy_Stable_1_0
contract are state variables. They are only set after the first transfer associated with liquidity
pools. If _poolCA (poolAddr) is not defined, the searchLiqPool function will return
type(uint8).max and result in an out-of-bounds exception in the following line.

DOD_Token_2_1_03.sol:L552-L562
if (isLiqPool[from]) {

buy = true;
_poolCA = from;

} else if (isLiqPool[to]) {
sell = true;
_poolCA = to;

} else {
other = true;

}
uint8 index = searchLiqPool(_poolCA);
LPool memory poolInfo = liqPoolList[address(this)][index];

LUSD_Token_1_0.sol:L563-L571
if (isLiqPool[from]) {

buy = true;
poolAddr = from;

} else if (isLiqPool[to]) {
sell = true;
poolAddr = to;

}
uint8 index = searchLiqPool(poolAddr);
LPool memory LiqPool = liqPoolList[address(this)][index];

Recommendation

It is recommended to include a check and avoid performing pool-related operations for
regular transfers.

Status

This issue has been resolved by the team.

15

9. Precision loss in prize tax calculation

Severity: Low Category: Numerics

Target:
- DOD_Token_2_1_03.sol

Description

When calculating the prize tax, half of the prize tax is burned, while the other half goes to
the treasury. However, if transferBalance is odd, 1 wei will be lost. There will be a mismatch
between the sum of _tOwned and the total supply.

DOD_Token_2_1_03.sol:L654-L657
transferBalance = ((swapAmount * prizeTax) / totalTax);
_tOwned[DEAD] += (transferBalance / 2); // half of the prize tax gets burned to DEAD
_tOwned[transitionCollector] += (transferBalance / 2); // half of the prize tax goes
to LStable treasury
_tOwned[address(this)] -= transferBalance;

Recommendation

Consider following the example below.

uint256 transferBalanceHalf = transferBalance / 2;
_tOwned[DEAD] += transferBalanceHalf;
_tOwned[transitionCollector] += (transferBalance - transferBalanceHalf);
_tOwned[address(this)] -= transferBalance;

Status

This issue has been resolved by the team.

16

10. Incomplete update of the excluded lists and allowances

Severity: Low Category: Business Logic

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

It is recommended to revoke the privileges of the previous accounts when transferring
ownership or updating the wallet or pool accounts, even though there are functions
available to update these settings.

Recommendation

Consider following the example below.

LUSD_Token_1_0.sol:L636-L637
_operator = newOperator;
_isExcludedFromLimits[newOperator] = true;

to
_isExcludedFromLimits[_operator] = false;
_operator = newOperator;
_isExcludedFromLimits[newOperator] = true;

Status

This issue has been resolved by the team.

17

11. Insecure access control for _hasLimits()

Severity: Low Category: Access Control

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

The _hasLimits function checks whether the transfer sender has limits using tx.origin. Using
tx.origin to authenticate is generally not a good practice since it can be abused by malicious
contracts when users are interacting with them.

DOD_Token_2_1_03.sol:L529-L538
function _hasLimits(address from, address to) internal view returns (bool) {

return from != owner()
&& to != owner()
&& tx.origin != owner()
&& !_isExcludedFromLimits[from]
&& !_isExcludedFromLimits[to]
&& to != DEAD
&& to != address(0)
&& from != address(this);

}

LUSD_Token_1_0.sol:L421-L428
function _hasLimits(address from, address to) internal view returns (bool) {

return tx.origin != _operator
&& !_isExcludedFromLimits[from]
&& !_isExcludedFromLimits[to]
&& to != DEAD
&& to != address(0)
&& from != address(this);

}

Recommendation

Consider changing tx.origin to msg.sender.

Status

This issue has been resolved by the team.

18

12. No need to authenticate the caller in view functions

Severity: Low Category: Data Validation

Target:
- LUSD_Token_1_0.sol

Description

There is no need to authenticate the caller in the getAllLiqPoolsData and getTreasury
function.

LUSD_Token_1_0.sol:L397
function getAllLiqPoolsData() external view onlyOperator returns (LPool[] memory)

LUSD_Token_1_0.sol:L440
function getTreasury() external view onlyOperator returns (address)

Recommendation

Consider removing the onlyOperator modifier.

Status

This issue has been acknowledged by the team.

19

2.3 Informational Findings

13. Use of floating pragma

Severity: Informational Category: Configuration

Target:
- All

Description

pragma solidity ^0.8.0;
pragma solidity >=0.8.0;
pragma solidity >=0.8.0 <0.9.0;

The Day of Defeat codebase uses a floating compiler version.

Using a floating pragma statement is discouraged, as code may compile to different
bytecodes with different compiler versions. Use a locked pragma statement to get a
deterministic bytecode. Also use the latest Solidity version to get all the compiler features,
bug fixes and optimizations.

Recommendation

It is recommended to use a locked Solidity version throughout the project. It is also
recommended to use the most stable and up-to-date version.

Status

This issue has been resolved by the team.

20

14. Missing two-step transfer ownership pattern

Severity: Informational Category: Business logic

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

The Legacy_Stable_1_0 contract uses a custom function setNewOperator which is a simple
mechanism to transfer the ownership not supporting a two-step transfer ownership pattern.
This simpler mechanism can be useful for quick tests, but projects with production concerns
are likely to outgrow it. Transferring ownership is a critical operation and this could lead to
transferring it to an inaccessible wallet or renouncing the ownership, e.g. mistakenly.

The DOD_Token_2_1_03 contract inherits from the Ownable contract. This contract does
not implement a two-step process for transferring ownership. Thus, ownership of the
contract can easily be lost when making a mistake in transferring ownership.

Recommendation

It is recommended to implement a two-step transfer of ownership mechanism where the
ownership is transferred and later claimed by a new owner to confirm the whole process and
prevent lockout. This functionality is implemented in the Ownable2Step contract provided by
OpenZeppelin.

Status

This issue has been resolved by the team.

21

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

15. Inconsistent use of router address in event emission

Severity: Informational Category: Logging

Target:
- DOD_Token_2_1_03.sol

Description

In the setNewLiquidityPool function, the address lpCA is obtained via V2ROUTER. However,
there is an issue in the event emission where V3ROUTER is mistakenly used instead of
V2ROUTER. It leads to a mismatch between the address used for emitting an event and the
actual address used in the function.

DOD_Token_2_1_03.sol:L314-L316
lpCA = IFactoryV2(IDexRouterV2(V2ROUTER).factory()).getPair(_LPTargetCoinCA,

address(this));

require(lpCA == address(0) && !isLiqPool[lpCA], "StudioL_Token: Pair already exists!");

lpCA = IFactoryV2(IDexRouterV2(V2ROUTER).factory()).createPair(_LPTargetCoinCA,

address(this));

DOD_Token_2_1_03.sol:L334
emit NewLPCreated(V3ROUTER, lpCA, _LPTargetCoinCA);

Recommendation

It is recommended to replace "V3ROUTER" with "V2ROUTER" when emitting the event.

Status

This issue has been resolved by the team.

22

16. Unexpected revert if the total supply is 0

Severity: Informational Category: Code Quality

Target:
- LUSD_Token_1_0.sol

Description

Calls to the totalSupply and decimals functions will be reverted when _tTotal is equal to 0.

LUSD_Token_1_0.sol:L166-L167
function totalSupply() external view override returns (uint256) { if (_tTotal == 0) {
revert(); } return _tTotal; }
function decimals() external view override returns (uint8) { if (_tTotal == 0) {
revert(); } return _decimals; }

Recommendation

It is recommended that totalSupply() returns 0 and decimals() returns the actual decimals
when _tTotal is equal to 0 in order to comply with the ERC20 standard.

Status

This issue has been resolved by the team.

23

17. Defined but unused events

Severity: Informational Category: Logging

Target:
- DOD_Token_2_1_03.sol

Description

In the DOD_Token_2_1_03 contract, the ETHWithdrawn and StuckTokensWithdrawn events
are defined but not used.

DOD_Token_2_1_03.sol:L48-L49
event ETHWithdrawn(address Withdrawer, address Recipient, uint256 ETHamount);
event StuckTokensWithdrawn(address Withdrawer, address Recipient, uint256 TokenAmount);

Recommendation

According to the definition, consider emitting the event in the corresponding part of the
rescueStuckAssets function.

Status

This issue has been resolved by the team. The team has removed the above two events.

24

18. Inappropriate error message

Severity: Informational Category: Code Quality

Target:
- LUSD_Token_1_0.sol

Description

Since there is both mint and burn logic in the _supplyControl function, the error message
only mentions the burning logic, which is inappropriate.

LUSD_Token_1_0.sol:L506
require(account != address(0), "ERC20: burn from the zero address");

Recommendation

It is recommended to set a more appropriate error message.

Status

This issue has been resolved by the team.

25

19. Missing zero address check

Severity: Informational Category: Data Validation

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

It is considered a security best practice to verify addresses against the zero address in the
constructor or setting. However, this precautionary step is absent for the variables
highlighted below.
1. DOD_Token_2_1_03.sol:L154-L183
constructor (

address _genesis,
address _marketing,
address _transition

) {
...

marketingWallet = _marketing;
_isExcludedFromFees[_marketing] = true;
_isExcludedFromLimits[_marketing] = true;

transitionCollector = _transition;
_isExcludedFromFees[_transition] = true;
_isExcludedFromLimits[_transition] = true;

...
}

2. DOD_Token_2_1_03.sol:L366-L376
function setNewCEXLiquidityPool(address lpCA) external onlyOwner {

liqPoolList[address(this)].push(LPool(lpCA, address(0), false, true, 0, 0,
0, 0));

...
}

3. DOD_Token_2_1_03.sol:L477-L489
function setStakingAndReferralPool(address _staking, address _referral) external
onlyOwner {

emit StakingPoolUpdated(_msgSender(), stakingPool, _staking);

stakingPool = _staking;
...

emit ReferralPoolUpdated(_msgSender(), referralPool, _referral);
referralPool = _referral;
...

}

4. DOD_Token_2_1_03.sol:L491-L502
function setMarketingWalletAndTransitionCollector(address _marketing, address

26

_collector) external onlyOwner {

emit MarketingWalletUpdated(_msgSender(), marketingWallet, _marketing);
marketingWallet = _marketing;
...

emit PrizeTaxCollectorUpdated(_msgSender(), transitionCollector, _collector);
transitionCollector = _collector;
...

}

5. DOD_Token_2_1_03.sol:L688-L692
function setSacrificeCA(address _ca) external onlyOwner {

require(sacrificeCA != _ca, "StudioL: already set to the desired address");
emit SacrificeCASet(_msgSender(), sacrificeCA, _ca);
sacrificeCA = _ca;

}

6. DOD_Token_2_1_03.sol:L698-L702
function setReferralCA(address _ca) external onlyOwner {

require(referralCA != _ca, "StudioL: already set to the desired address");
emit ReferralCASet(_msgSender(), referralCA, _ca);
referralCA = _ca;

}

7. LUSD_Token_1_0.sol:L289-L311
function setDexRouterTradingStatus(address _router, bool _switch, uint32
pauseTimeInSecs) external onlyOperator {

if(_switch) {
require(!enableAggregateDex[_router], "StudioL_Token: trading already

enabled.");

enableAggregateDex[_router] = true;

...

emit DexRouterEnabled(_msgSender(), _router, block.number, block.timestamp);
} else {

...
}

}

8. LUSD_Token_1_0.sol:L433-L438
function setTreasury(address _treasury) external onlyOperator {

require(treasury != _treasury, "StudioL_Token: Already set to the desired
value");

emit TreasurySet(_msgSender(), treasury, _treasury);
treasury = _treasury;
_isExcludedFromLimits[treasury] = true;

}

9. LUSD_Token_1_0.sol:L633-L646
function setNewOperator(address newOperator) external onlyOperator {

require(newOperator != _operator, "StudioL_Token: This address is already the
operator!");

emit OperatorTransferred(_operator, newOperator);
_operator = newOperator;
_isExcludedFromLimits[newOperator] = true;

...
}

27

Recommendation

Consider adding zero-address checks for the above-mentioned variables.

Status

This issue has been resolved by the team.

28

20. Redundant variables

Severity: Informational Category: Redundancy

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

Redundant variables in the contract may serve no essential purpose in the contract's
functionality, consume unnecessary storage space and increase the gas cost of transactions
and deployment. The variables mentioned below are not used in contracts or some parts of
them are redundant.

1. DOD_Token_2_1_03.sol:L59
uint256 private _circSupply;

2. DOD_Token_2_1_03.sol:L68
address constant public V3ROUTER = 0x9a489505a00cE272eAa5e07Dba6491314CaE3796;

There is no V3 pool created in the DOD_Token_2_1_03 contract.
3. DOD_Token_2_1_03.sol:L74
mapping (address => LPool[]) private liqPoolList;

The contract only uses address(this) to assign to the mapping key. Consider using LPool[]
instead of this mapping.

4. LUSD_Token_1_0.sol:L63
uint16 constant DIVISOR = 10000;

5. LUSD_Token_1_0.sol:L132
address private governor;

6. LUSD_Token_1_0.sol:L86
mapping(address => uint256) private dexRoutersIndex;

7. LUSD_Token_1_0.sol:L108
struct LPool {

...
bool launched;
...

}

Recommendation

Consider removing redundant variables or replacing redundant parts of variables with
simpler forms.

Status

This issue has been resolved by the team.

29

21. Redundant code

Severity: Informational Category: Redundancy

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

DOD_Token_2_1_03.sol:L207
function totalSupply() external pure override returns (uint256) { if (genesisTotalSupply
== 0) { revert(); } return genesisTotalSupply; }

DOD_Token_2_1_03.sol:L215
function decimals() external pure override returns (uint8) { if (genesisTotalSupply ==
0) { revert(); } return _decimals; }

The totalSupply() and decimals() functions contain unnecessary checks for the
genesisTotalSupply constant. The genesisTotalSupply is already defined as a non-zero
constant, making the additional checks redundant.

DOD_Token_2_1_03.sol:L285
function isContract(address account) internal view returns (bool) {

The isContract function is never called in this contract.

DOD_Token_2_1_03.sol:L512
function setExcludedFromFees(address account, bool _switch) external
onlySacrificeAuthorized returns (bool) {

_isExcludedFromFees[account] = _switch;
return true;

}

In the setExcludedFromFees function, the return statement is unnecessary since the
function consistently returns a value of true.

DOD_Token_2_1_03.sol:L529-L538
function _hasLimits(address from, address to) internal view returns (bool) {

return from != owner()
&& to != owner()
&& tx.origin != owner()
&& !_isExcludedFromLimits[from]
&& !_isExcludedFromLimits[to]
&& to != DEAD
&& to != address(0)
&& from != address(this);

}

LUSD_Token_1_0.sol:L505
function _hasLimits(address from, address to) internal view returns (bool) {

return tx.origin != _operator
&& !_isExcludedFromLimits[from]
&& !_isExcludedFromLimits[to]
&& to != DEAD

30

&& to != address(0)
&& from != address(this);

}

The _hasLimits function contains a redundant condition. When from is equal to
address(this), the !_isExcludedFromLimits[from] check would already evaluate to false.

LUSD_Token_1_0.sol:L505
function _supplyControl(address account, uint256 amount, bool mintORburn) private
returns (bool) {

In the _supplyControl function, the return statement is unnecessary since the function
consistently returns a value of true.

LUSD_Token_1_0.sol:L501
function supplyControl(address account, uint256 amount, bool mintORburn) external

onlyTreasury nonReentrant returns (bool) {

In the supplyControl function, the nonReentrant modifier can be removed due to the absence
of external calls, and there is no requirement to import ReentrancyGuard.sol.

LUSD_Token_1_0.sol:L140-L143
_operator = _msgSender();

_isExcludedFromLimits[_msgSender()] = true;
_isExcludedFromLimits[_operator] = true;

LUSD_Token_1_0.sol:L256-L259

_allowances[_msgSender()][_router] = type(uint256).max;
_allowances[_router][_msgSender()] = type(uint256).max;
_allowances[_operator][_router] = type(uint256).max;
_allowances[_router][_operator] = type(uint256).max;

In these assignment operations, it can be observed that _msgSender() is effectively the
same as the _operator variable, leading to redundant assignment operations.

Recommendation

Consider removing the redundant code.

Status

This issue has been resolved by the team.

31

22. Gas Optimization Suggestions

Severity: Informational Category: Gas Optimization

Target:
- DOD_Token_2_1_03.sol
- LUSD_Token_1_0.sol

Description

Some changes can be made to improve gas consumption:

DOD_Token_2_1_03.sol:L277
function multiSendTokens(address[] memory accounts, uint256[] memory amountsInWei)

DOD_Token_2_1_03.sol:L396
function pauseTradeByPool(address[] memory poolCA, bool pauseAllPools, uint32

pauseTimeInSecs)

LUSD_Token_1_0.sol:L224
function multiSendTokens(address[] memory accounts, uint256[] memory amountsInWei)

These functions only require read access of the input data, using calldata instead of memory
can access function arguments directly from the input data, without the need to create a
separate copy in memory.

DOD_Token_2_1_03.sol:L298-302, L306-L310
_isExcludedFromFees[V2ROUTER] = true;

_isExcludedFromLimits[V2ROUTER] = true;

...

_allowances[address(this)][V2ROUTER] = type(uint256).max;

_allowances[V2ROUTER][address(this)] = type(uint256).max;

_allowances[address(this)][V3ROUTER] = type(uint256).max;

_allowances[V3ROUTER][address(this)] = type(uint256).max;

It is recommended to move these constant assignments to the constructor function.

LUSD_Token_1_0.sol:L457-L499
function syncNativeANDStablePairs(bool _syncNativeCoin, bool _syncStableCoin) public {

for(uint8 i = 0; i < liqPoolList[address(this)].length; i++) {

...

amounts = IDexRouterV2(LiqPool.dexCA).getAmountsOut(ourPathCoin0Balance,

refPath);

...

if(pairedCoinBalance > _tOwned[poolAddr]) {

...

}

}

Highlighted variables above can be stored in temporary variables for further processing
because reading in storage will cost more than reading in memory.

Recommendation

32

Consider applying the gas optimizations where needed.

Status

This issue has been resolved by the team.

33

Appendix
Appendix 1 - Files in Scope
This audit covered the following files provided by the client:

File SHA-1 hash

LUSD_Token_1_0.sol fe78cc60d533d5b2168aea39bb4b795de9c50d4d

interface/IDexRouterV2.sol 5cf63b36afdcf89c52870285bf7c9d9fdff3f6d0

interface/IPairV2.sol 4e7007fd092ea01fac269ea5864bbb6db8f33c86

interface/IFactoryV2.sol 893de6e7d1ba380b67dd3695bb287fbeb7cb8118

interface/IFactoryV3.sol 65ec834742812e09c55b33860769ddbeed9e524f

DOD_Token_2_1_03.sol 335311840c97f5070cdf8118644f48b912345fdc

After resolving the issues, the contracts are flattened and deployed to the addresses listed

below:

Contract Address

Legacy_Stable_1_02 0x7e18dabfb0eC86C08749a85752d45Bcf6B4aceFf

DOD_Token_2_1_05 0x0e9729a1Db9E45FF08F64E6C4342Be3921e993e0

34

https://bscscan.com/address/0x7e18dabfb0ec86c08749a85752d45bcf6b4aceff
https://bscscan.com/address/0x0e9729a1Db9E45FF08F64E6C4342Be3921e993e0

